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NEW ALGORITHMS FOR NEAR NEIGHBOR SEARCHING

by

Bernard Chasellet Franco P. Preparatas
Dept. of Computer Science Coordinated Science Laboratory0
Brown University University of Illinois
Providence, RI Urbana, IL

Abstract.

This paper proposes a new technique for solving near neighbor problems in the plane. We

* illustrate our method on the following two problems:

1. k-Nearest Nelgbbon Given a set S of n points in the plane and a query of the form (,k), 'With

q aquey pintand k a positive integer, report the k points of S closest to q.

2. Cb4-Rm erl ie e fnpit i h ln n ur ftefr q )

with q a query point and d a positive real number, report all the points of S that lie inside the

circle of radius d, cnedatq.

* Our main results include O(nl+E) space, 0(k + log na) query time algorithms for solving each

of these problems; k denotes the size of the output. We also show that it is possible to solve either *0

problem in 0(k log2 n) query time, using only 0O(n log na) space. These results constitute significant

improvements over previous methods, in particular regarding the circular range search problem,

which had previously defied effcient solutions.

tThk resnearch was supported ia part by NSr prast Mc. 8303025.4Thk research was supported in part Joint Serices Ilectreshcs Program under Contract N00014-7-C-0424.
bie documeang ie being iuluiamauuly issnued as a Brown Univ. toch. tep. ad a report of the Coordinated Scisnce

Laboratery', Univ. UMinsie. .
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1. Itroduction

The abundant literature on near-neighbor problems [1-5,8,11,12] witnesses the central location

that the notion of prosimdy occupies in computational geometry. Among the most powerful tools

available today for dealing with proximity relationships, the well-known Voronoi diagram stands

out u one of the most versatile as well. Even its failure to solve farthest point or k-closest point

problems can be easily remedied by introducing the notion of higher order Voronoi diagram [11].

With this construction in hand, it is possible to solve a number o near-neighbor problems, two of

which will be of special interest to us in this paper:

1. k.Nearest Neighbor. Given a set S of n points in the plane and a query of the form (q, k), with

q a query point and k a positive integer, report the k points of S closest to q.

A2. Cireular Range Searehl Given a set S of n points in the plane and a query of the form (q, d),

with q a query test point and d a positive real number, report all the points of S that lie inside

the circle of radius d, centered at q.

Every algorithm for a search problem to be solved in a repetitive mode over a fixed database

of n items is characterized by three complexity measures -M(n), Q(n), and P(n)- which are,

respectively, the storage, the response time, and the preprocessing time. For obvious reasons, the

time spent organizing the data structure (preprocessing time) is not as important a cost measure as

M(n), so we shall temporarily ignore P(n) until the last section of this paper.

Previous work on the k-nearest neighbor problem -includes a number of algorithms based on the

Voronoi diagram, the most efficient of which have the following characteristics [4,61: M(n) 0 0(n 3 )

and Q(n) = O(k + log n). Other (less efficient) methods were found earlier [5,8,11]. The circular

range search problem is also amenable to efficient treatment by means of Voronoi diagrams. A

straighforward extension of an algorithm given in [1] led to the best method known until now (4]; the

method allows us to report the k points within the query circle in time Q(n) = 0(k + log n log log n)

and requires M(n) = O(n8 ) storage. Although we are mainly concerned in this work with algorithms

that achieve optimal (or near-optimal) query times, we should still mention the existence of a space-

2

,

• .- ,. ,- .-. .- . . , .:,,- ,-.. .- - - .- ,, , .- - . ,. - , .- ,. , - .. . .. ,, , -,.- .. -. • - . ". - .. . ,- -. - .- ,/ ',.' ,.'



77 7T - - - -W -----. 1---..--- .- .-. * --

optimal algorithm, with the following characteristics [12]: M(n) = O(n) and Q(n) = O(k + n'").

For other methods, consult [1-3].

The purpose of this paper is to describe a novel representation scheme for higher Voronoi

diagrams that allows us to improve on the best algorithms previously known for the problems

mentioned above. The following table summarizes our main results; k designates the output size.

problem space query time

* k-nearest neighbor (fixed k) 0(k(n - k)) O(k + logn) 1l.
k-nearest neighbor 0(nl+) O(k + log n)

k-nearest neighbor O(n log n) 0(k log2 n)

circular range search O(n1+) O(k + log n)

circular range search O(nlogn) O(k log 2 n)

2. Some Background

Let's briefly review the main steps of the algorithms proposed in [4] for solving the k-neareot

neighbor and the circular range search problems. In the following, ALGNN (resp. ALGcR) will

denote the algorithm of [4] for the former (resp. latter) problem. Let Vor 5 (S) denote the order-k

Voronoi diagram of a set S of n points in the plane. Recall that Vork(S) is a subdivision of the

plane into convex regions, all of whose points have the same k nearest neighbors. More precisely,

Vor 5(S) = U V'(T),
T ;;TI-h

.p) where V (T) is the locus of points that are closer to any point in T than any point in S - T. The

complexity of higher-order Voronoi diagrams has been thoroughly analyzed by Lee [8], who showed

that the size of Vor 5 (S) (e.g. the number of edges) is always 0(k(n - k)), a fact which we express

by the relation

IVor&(S)j - O(k(n - k)). (1)
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.-.-. Both ALGNN and ALGcRe involve computing the set of diagrams {Vor2,($) 1 0 < i < Llog 2 n)).
In order to efficiently retrieve the neighbors associated with each Voronoi polygon, we augment the

graph representation of each diagram Vor&(S) with its neighbor-lista, i.e., the set of k neighbors

corresponding to each face. From Lee's findings, it then follows that O(n3) is an upper bound on

the storage required by both ALGNNv and ALGCR.

Both algorithms were presented in [4] in order to illustrate the concept of filtering aearch. This

notion prescribes to trade traditional searching techniques for a two-step approach: seeop-and-filter.

The idea is to collect (acoop) a set of O(k) points that is guaranteed to include the k desired ones and,

in a second stage, filter out the extraneous items. In the case of, say, ALGNN, this idea materializes

as follows: first, compute the integer j such that 2Y- I < k < 2j; then determine the face f of

Vor s(S) that contains the point q, finally, retrieve from the list of neighbors associated with I,

the k points closest to q. Using an optimal planar point location algorithm [7,10] to locate q and

a linear-selection algorithm to retrieve the k neighbors, ALGNN can be easily shown to have the

following performance: M(n) = O(n3) and Q(n) = O(k + log n).

ALGCR proceeds along similar lines. The main idea was originally proposed by Bentley and

Maurer in [1]. It involves locating q in Vor 2 ,(S) for i = 0, 1, 2,..., and examining the corresponding

neighbor-list, proceeding in this manner until we first encounter a point of S that lies further than

d from q. At this stage, we know that the desired points all lie in the neighbor-lists examined so

far, and only the last one may contain undesired points. A simple analysis shows that ALGCR's

performance is given by M(n) = O(n3) and Q(n) = O(k + log n log log n).

We will show how to apply the notion of filtering search, to make the representation of neighbor-

lists more economical, and thus improve on the above results. The basic idea is to partition VorA(S)

into sets of adjacent faces to which are attached augmented neighbor-lists. This allows us to save

a factor of n in the space requirements of ALGNN and ALGCR. Further application of filtering

search will lead to still greater improvements.

4,I
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. A Now Representation of Higher Order Voronol Diagrams

The purpose of this section is to show how neighbor-lists can be stored implicitly without

increasing the asymptotic complexity of Vort(S), i.e., using only 0(k(n - k)) storage. We define

Delt(S) as the dual graph of Vork(S), where vertices of the former and faces of the latter are in

one-to-one correspondence, and adjacent vertices in Delk(S) correspond to adjacent faces in Vort(S)

(faces are adjacent if they share an edge and not just a vertex). Note that if no four points in S. -

are co-circular, the vertices of Vork(S) have degree three, therefore Del,(S) is a triangulation. At

any rate, the dual graph is always connected, which makes it possible to define a spanning tree of

Del(S), denoted TI. For the sake of simplicity, we transform T% into a binary tree T* (i.e., a tree

with all degrees at most three), by reducing high degrees if necessary. To do so, assume that v is

a vertex of TI of degree m > 3 and let v1,. .. ,.YR be its adjacent vertices in clockwise order. We .*'.

replace v by m- 2 vertices W,..., Wm-2, defined as follows: w1 is adjacent to V1, U2, 2 and Wm--

to Wm-s, em-1, v..; each other vertex vi is adjacent to wi- _, v +, w 1.

It is easy to see that this transformation of Tt can at most double the original number of vertices:

indeed, let P denote the number of vertices of Delk(S) and let Pi be the number of vertices of degree -

i in T5. If I is the maximum degree in TA, we have < v = P and Z' < ivi = 2(P - 1)

(since TA is a tree). Let IT* I denote the number of vertices of T. Since each vertex of Tt of degree

> 3 gives way to i - 2 vertices in T, the sise of T* is given by

IT'-=vi + -v2 + ,(i- 2) iv -' P2- 2 v v,<2P-2. (2)

The following is common knowledge; thus given without proof.

°.,

Lemma Let T be a binary tree with m vertices. It is possible to find, in 0(m) operations, an edge

of T whose removal leaves two (connected) subtrees T(M] and T (
2), with at most 2m/3 vertices each.

The decomposition process embodied by the lemma can be applied recursively on the tree T*,

until we achieve a decomposition of the original tree into connected subtrees T , , ... , T, whose """"

numbers of vertices are all comprised between k and 3k. This is always possible since in each

Fill
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splitting step each component has at least one third as many vertices as its parent. Note that a

given face of Delt(S) may be represented as a vertex in several of the subtrees T*,..., T*. We will,

however, allow only one instance to be accessible in the search process.

We now argue that neighbor-lists within any subtree T: cannot differ by a large amount. Indeed,

let a(u) be the neighbor-list of the face of Vort(S) that corresponds to the vertex u of T*. Two

adjacent vertices u, v E T' correspond either to the same face of Vork(S) or to two adjacent faces.

For this reason, a(u) and a(u) differ in at most one element. This allows us to set up an implicit

representation of neighbor-lists within each subtree T. The simplest solution would consist of

merging all the neighbor-lists into a superset Si - UET, o(u) for s = 1,..., q. Since To does

not have more than 3 vertices and each neighbor-list has exactly k elements, we have the relation

IS1 < 4k. Since on the other hand, IT > k, we have q < IT'1/k, from which we readily derive

< 1S,1 _ qmaxlS,I < 0. 4k = 41TI; hence from (2)

ISiI < 8P. (3)
A 5I.-

We complete the preprocessing of the planar graph Vort(S) by organizing it for efficient planar 0

point location [7,10], and associating with each face f the index of the subtree T* containing the

dual vertex of f. As mentioned earlier, this index may not be unique; if there are several candidates

we simply choose any one of them. We are now in a position to determine the k nearest neighbors

of a query point q by locating the face of Vork(S) that contains q. Since the corresponding set Si

contains at most 4k elements, we can apply a linear-selection algorithm to retrieve the k nearest

neighbors of q in O(k) time.

It is possible to circumvent the difficulties inherent to linear-selection methods by slightly refining
* .4

the representation of Si. Choose any vertex v. in T" (i - 1,...,q) and call it the root. The set a(v*)

is represented in full by means of a linked list. Since a(u) and a(v) differ in at most one element

when u and v are adjacent vertices in Ti., we can compute the lists a(v) incrementally. Indeed, if

a(u) is available, replacement of one item in a known position of a(u) enables us to compute a(v);

this is done by simply specifying the position in o(u) and the item to be inserted as replacement.

.40
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Thus, assuming that we have a linked list representation of T:, suppose that we wish to compute

a(v), where v is an arbitrary vertex of Ti. We identify the unique path in Ti from v to v*, and

traverse it backward, at each step updating the current point list. This list will be precisely a(v) at

the termination of the traversal. Once again the report time will be 0(k), since ITf _ 3k. This

scheme necessitates the storing of o(v*) and a fixed amount c of data per edge in T*. Thus the
o0

added storage C, associated with T: is

C, - a(v') + c(IT:I - 1) < k + cIT*I.

Therefore the total storage can be bounded from above as follows

V. Ci <qk -- €E [:. < •k-} [' (c } 1)[T'[ < 2(c 1)P,

1:i q k

where use has been made of q _ T'1/k and of Relation (2).

Whatever the strategy chosen, Relation 3 and the inequality above show that the total amount

of storage needed is O(P). Since, as in any planar graph, the number of faces in Vorh(S), P, is

dominated by the number of edges, Relation 1 shows that the overall storage used by the algorithm .

is 0(k(n - k)).

Theorem 1. When the value of k is fixed (i.e., k is not part of the query), it is possible to solve the

k-nearest neighbor problem in 0(k + log n) time, using O(k(i - k)) space.

Throughout this paper we will use the notation Vorh(S) to designate the data structure used in

Theorem 1, i.e., the order-k Voronoi diagram of S, augmented with the implicit representation of

'- neighbor-lists and preprocessed for efficient planar point location.

4. The k-Nearest Neighbor Problem

Algorithm ALGNN can be used exactly as described in Section 2; the only difference coming

from the new representation of higher-order Voronoi diagrams now used. Theorem 1 shows that the

loop
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overall storage needed is

q0( V (n - 2')) 0 (n 2).

The query time is clearly 0(2j + log n), with 2j - 1 < k < 2j , hence O(k + log n). This shows that

- it is possible to solve the k-nearest neighbor problem in 0(k + log n) time, using 0(n 2) space. As

will be established in the following, this improvement can be taken much further with a more subtle

use of jUtering search.

4.1. Outline of the approach

We begin with an informal description of the basic idea of the approach. In the data structure

Vor'(S) we call the parameter y the scope of the search. In the previously outlined ALGNN the

storage cost is mainly due to the necessity of having a Voronoi diagram with the adequate search

scope over the entire set S for any query: this is because we stipulated to carry out the filtering search

as a single stage process. If instead we explore the idea of a multistage search, at each stage we

could use the information so far acquired to devise the best strategy for the next stage. Specifically,

3suppose that in the course of the process we have partitioned the original set S into several nontrivial

subsets, and -as a policy- we explore the "most promising" subset with an increasing search scope.

I ".' Such a scheme would have the property that, while the search scope increases, the size of the searched

set decreases, which bears the promise of reduced storage requirement.
-'lp

More formally, the main (primary) search structure is appropriately described as a rooted tree

T. A search, prompted by the query (q, k), is to be viewed as the visit of a subtree Tq of T, where

the term 'subtre? refers here to any connected subgraph of T that contains the root. Associated

with each node v of T there is a set 5(v) g S, and a (secondary) search data structure Vor;(,)(S(v)),

- *where k(e) is the search scope at node v. We also define: r(v) is the set of offspring nodes of v;

h(v), the depth of v, is the number of ancestors of v in T; level j of T is the set of all nodes v with

if. r(u) - {w,..., ,} (c > 2), then we stipulate that {S(w),...,S(v)} is a non-trivial-.

partition of S(v). Thus is we set S(root) = S, it is immediate to recognize that the set of nodes on

8 3
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a given level of T define a partition of .. , and that the level-(j + 1) partition is a proper refinement

of the level-j partition (j > 0).

We now restrict the structure of T by imposing the following regularity constraints:

1. All internal nodes of T have the same degree c > 1;

2. The subsets of S(v), assigned to the offsprings of v, are (nearly) equally sized (this is trivial

when c is equal to 1 and is readily obtained by requiring n = cl' otherwise);

3. If u is the parent of v, then k(v) = f X k(v), where f > 1.

Note that we may choose k(root(T)) = [log 2 nJ, since this will equalize search time and report AV

time for root(T). Moreover, Vork(,)(S(u)) is replaced by S(u) itself if IS(v)l _ k(u); thus, if v is a

leaf of T and w is its parent, we wish to have IS(v) _< k(v) and IS(w)I > k(w). This characterizes

the leaves, and the depth h of T is the smallest integer satisfying the following inequality:

IS(v)l n/ch< log 2 nj f' = k(v)

or equivalently (fc)h > n/ 0log2 nj. We can thus express h as follows:

h= [logn-log[iog nJ1 (4)log(i C) "

The storage requirement of T is readily evaluated. The data structure Vor,(,)(S(v)) is stored

in O(k(v) IS(u)I) space (see Section 3); since k(v) is constant for all nodes v at the same depth, the

storage requirement for all nodes at level h(v) of T is O(k(v) "!S(v)l) = O(nk(u)). Recalling that

k(u) = [log 2 nJ fh(v), we derive that the total storage requirement M(n) of T is

M(n) =O(ntlogn f I')-=-O(nfhlogn). (5) ..

Substituting (4) into (5), we obtain

M(n) = o(,n'+ /.. (log 2 n)'-"). (6)

Therefore, given any c >0, if we choosef and c so that I f c, we can achieve storage

M(n) = (l~)



4.2. Answering a Query

The subtree Tq of T which describes the search prompted by a given query (q, k) is grown one

node at a time, starting at the root r. The primitive operation used by the search process is the

visit of a node v, and consists of the following actions:

Step 1: Locate q in Vork(,)(S(v)) and report the set Nq(v) of the k(v) closest neighbors to q in S(v)

(Nq(v) is the set retrieved at v.)

Step 2: Determine the member of Nq(v), called far(v), which is farthest from q.

If T* denotes the subtree of T visited so far by the search process, then

U Nq(V)
-Eleaves of r

denotes the total retrieved aet.

The process makes use of a priority queue R that contains a subset of the nodes of T. The

ordering in R is based on the value of the distance of far from q, and the top of R (the node to be

extracted) is the node in R for which this .distance is minimum. Queue R is managed as follows:

initially, the root r of T is visited and inserted into the queue. At the generic step, the node v at the

top of R is extracted and, if it is not a leaf of T, all of its offsprings are visited and inserted into the

queue. By this process, it is immediately recognized that the nodes in R are leaves of T, all nodes

of which have been visited by the search. Note, however, that not all leaves of 7' are necessarily in

R; indeed, a leaf of T* that is also a leaf of T, upon leaving R, does not generate any new leaves

to be re-inserted. Each visited node is marked and the process terminates when the set of marked

nodes is the node set of T. (i.e., when T* = Tq). We shall now develop the criterion for termination,

which is based on the claim that when the total retrieved set is large enough it is guaranteed to

contain the desired k nearest neighbors of q.

The C be the disc centered at q that passes through the k-th nearest neighbor of q. Without

loss of generality, we may assume that only one point lies on the boundary of C, so as to ensure

that the notion of 'k nearest neighbors' is well defined. A node v is said to be saturated if far(v) lies

40
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inside C, and unsaturated otherwise. For each saturated node v, New(v) denotes the set of points

that are discovered for the first time while visiting v: New(v) represents the contribution of v to the 0

k nearest neighbors of q, and INew(v) is, in bookkeping terms, the net revenue for a cost of k(v)

retrieved points. We claim that INew(v) (1 - 1/f)k(v). Indeed, any point p E Nq(v) previously,

discovered must have been encountered for the first time while visiting an ancestor of v and must

also belong to N,(father(u)). Thus the set of newly discovered points is

New(v) - Nq(v) - v) f Nq(father(v)),

and its cardinality is INq(v)-iS(v) n Nq(father(v)). Since Nq(v) = k(v) and is(v) n Nq(father(v))j

INq(father(v)) - k(v)/f, at least k(v) - k(v)/f points are discovered for the first time at v, as

claimed. Thus

I Nq(v) f-l New(v). (7)

We now observe that an unsaturated node u will not be extracted from the queue R as long as

R contains at least one saturated node u; indeed, the distance from q to far(u) is dominated by the

S. distance from q to far(v), so that the presence of v prevents u from appearing at the top of R. This

implies that the visit of Tq is completed when the last saturated node v* leaves R. Indeed, after

v° has been extracted, R contains only unsaturated nodes; for any such node u, Nq(u) contains at

least one point of S outside C, which implies that all the k nearest neighbors of q have already been

retrieved (i.e., they belong to the set U eleaves(T-) Nq(V)), so Tq has been visited entirely.

Let us now return to consider an unsaturated node u, offspring of a saturated node w,. After

the extraction from R of the (saturated) w, the visits of its offspring (all inserted into R) have been 0

done at a cost of CjNq(u)[ - CfiNq(w)j retrieved points. We stipulate to charge the cost of the

visit of each unsaturated offspring u to its saturated parent o; in the worst case, all offsprings are

unsaturated, so that vi gets charged the additional cost c. I Nq(u)I ef INq(w) 1 I New(w)I.

Consider now the event consisting of the extraction of the lat saturated node from R. At this

point, Esaturated. tNew(v)j _ k, since all the k nearest neighbors of q belong to the retrieved set.

.? 11
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This event can be detected by controlling a cumulative sum

IS
A= k(v).

visited.

Indeed, let V denote the set of nodes visited; this set is partitioned into V1 , the subset of saturated

nodes, and V2 , the subset of unsaturated nodes.

A= k(t) INq(v) = i INq(v)l + INq(u)l.
9EV 9EV rEV, SEV1

*For a saturated v, we have IN4(v)I _ T-L,New(v)l (Relation 7), so that;

EJ INq(v)I < f  INew€,)l.

9E- 1Vvi i

On the other hand, the cost of retrieving Nq(u) for each unsaturated node u is charged to their

saturated parents, as discussed earlier. So, let now V3 denote the subset of V with unsaturated

offspring. We have

.. Nu) < T- 1. 1 New(v)I < !,-5, INew(v)l,
%&Eva sEVaf EV

* and, in conclusion:

(Sice1 l)!s-hA" INew(v)l < (17I + )C k

Since f is the maximum value that A can assume as the last saturated node departs from

R, the condition

C. A> k elfk_ -

can be used to detect the termination of the scooping phase of the filtering search.

We can now describe the search algorithm. To provide for efficient updating, the priority queue

R will be a dynamic heap (e.g. 2-3 tree). This will allow us to retrieve the top of the queue, as well

as perform insertions and deletions, all in logarithmic time. For convenience, we should keep in the

queue pairs of the form (uar(u)). We have:

I4..
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Initial Step:

R.If k < log 2 n, then visit the root r and halt; else let A:= 0, T* 0, and insert (rfar(r)) into

• "-General Step: Let v be the node at the top of R and let A = ',Er" k(v)-

1. Assume that A < clk. If v is a leaf of T, delete v from R and iterate. Otherwise, delete v

from R, and visit each child z of v, and insert (z, fr(z)) into both R and T. Update the value of

A and iterate. Updating A involves adding ck(z) to its current value (where again z is the generic

child of v).
2. If A > cIk, apply a lnear-selection algorithm to the set Uweleaves(To)/Nq(u), and determine

* ithe k points closest to q. These points constitute the k nearest neighbors of q in S.

With the previous analysis at hand, evaluating the query time of the algorithm is quite straightfor-

Fl ward. Processing node v requires time O(k(v) + log n), which is also 0(k(v)), since k(v) - (3(log n).

The query time will thus be O(A), so we can conclude

Q(n) = 0(k + n).

Thus, we have derived the main result of this section.

Theorem 2. It is possible to solve the k-nearest neighbor problem in O(k +log n) time, using Q(nl+,)

space; e is an arbitrarily small real number > 0.

We close this section with two remarks. The first is that the constant time that multiplies

k in the expression Q(n) = O(k + logn) is proportional to c- = (1 + cf)f/(f - 1). Since e -

logf/log(fc), for fixed f, we easily derive that el = 0(f19/). Finally, we note that if we let c = 1,

we obtain a scheme where the primary structure T is a chain (and, consequently, S() S S for each

i E T). In this case the global storage -see (6)- becomes 0(n ' ) and the method behaves like the

one described in Section 3 (save for the replacement of bisection search with a sequential search).

13
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4.3. A More Space-efident Solution

It is possible to lower the space requirements of the previous algorithm at the price of some

increase in the query time. We will present an O(n log n) data structure that allows a query to be

answered in time O(k log is). This method can be of great interest when the application specifically

requires that the k neighbors be sorted by distance to q. As we will see, another asset of this scheme

is its utter simplicity. Let T be a complete binary tree defined over the n points of S; each leaf

of T corresponds to a distinct point, with the n points appearing in ascending z-order from left to

right. Each node v of T spans a subset S(v) of S consisting of the points stored at the leaves of the

subtree rooted at v. The preprocessing involves computing the (order-i) Voronoi diagram of each

subset $(v); this can be done in 0(n log n) time by using the divide-and-conquer algorithm of [11].

Each Voronoi diagram will be preprocessed for efficient planar point location, using Kirkpatrick's

algorithm [7]. Aside from its conceptual simplicity, this point location method has the advantage 0

over [101 of requiring only linear preprocessing, provided that the edges of the graph are already

ordered around each of their adjacent vertices. This is precisely the case with the Voronoi diagram

construction of [11], therefore the entire preprocessing will take O(n log n) time.

We answer a query (q, k) by first computing the nearest neighbor of q in 5, using the structure

Vorl(S(r)), where r is as usual the root of the tree, and $(r) S S. Next we visit the two offsprings

of r and proceed as in the method described in the preceding section; in the present case the

priority queue R yields the neighbors of q in order of increasing distance. There are a few obvious

modifications, suggested by the special nature of the problem: let p be the point just extracted from

the top of the queue, and let v be the corresponding node in T. It is easy to see that p will 'drag' the

computation all the way down to the leaf, w, where it is stored. Once this leaf has been reached, we

• "will delete p from the queue and iterate. Note that it is useless to search the structures Vorl(S(z))

encountered on the path from v to w, since this will always produce the same answer, i.e., p. Instead,

we shall just visit the siblings of the nodes on this path, thereby cutting to a half the computational

search work. Thus, since the number of nodes of T visited by the search is O(k log t) -see [9]-

and each visit has a cost of O(log n), we conclude

.

,,4,,5
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Theorem L It is possible to solve the k-neareet neighbor problem in O(k log2 ,) time, using O(n log n)

* Ispace.

- 5. The Cireular Range Search Problem

* Before resorting to the fairly heavy machinery of Section 4 in order to produce a near-optimal

algorithm for the circular range search problem, we wish to show how a simple application of Theorem

1 leads to a significant improvement over the algorithm ALGCR of Section 2.
q

5.1. A Preliminary Agorithm

We will describe an algorithm with performance: Q(n) - O(k +log n) and M(n) = O(n2 ) (with

'4 k being the output size). Recall that the basic idea behind ALGCR is to retrieve the neighbor-lists
4
* K of the regions of Vor.(S) containing the query point q, for " - 2'; i = 0, 1. This process will

stop at the first encounter with a point further than d from q. At this stage, the current neighbor-list

5 will be a superset of the desired set, with at most 2k points, therefore a simple scan through it will

complete the work. Since a total of O(log k) neighbor-lists will thus be examined, the query time

i -. of the algorithm is O(k + log k log n), which can be easily shown to be O(k + log n log log n). If we

substitute the data structure of Theorem 1, Vor;(S), for the combination {Vor.(S), neighbor-lists},

S"we lower the storage requirements to

M(n) = 0( 2 2-'n) = 0(n 2 ).

We can improve the query time by slightly reorganizing the computation. Let r 0log2 log2 nj.

The first step consists of retrieving the sought neighbor-list in Vor2,(S). If it contains any point

- further than d from q, we complete the computation by filtering out the extraneous items, at a

total cost of 0(21 + log n) = O(log n) operations. If on the other hand all the points in the

list lie within a distance d of q, we must pursue the search with larger scope. We return to the

previous mode of operation, retrieving the sought neighbor-lists in Vor;',(S), Vor2+,=(S),.... Let

..,1
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Vorp(S) be the last Voronoi diagram investigated. A total of E - r + 1 neighbor-lists will have

been examined, therefore the algorithm requires 0((E - r + 1)logn + 2i) time, hence

Q(n) O((E - r + 1) log n + 2'). Since log2 n < 2?, we have

4...

(E -r-- 1)log2 n-+ 2z (E-r+ 2 '  + 1)2r < (2 -' + l + 1)2? < 2+2,

S. therefore Q(n) = 0(28+2). The examination of Vora._,(S) produces only points within d of q,

therefore k > 25-1. This implies that Q(n) - O(k), and completes the proof that in all cases

Q(n) =o(k +log n).

5.2. A Near.Optlmal Algorithm

The preprocessing is absolutely identical to the one described in Section 4.1. We construct the

tree T with the data structure Vor;(,)(S(v)) attached to each of its nodes v. Answering a query can

-. be now described recursively quite simply: starting at v = root, retrieve the k(v) nearest neighbors

of the query point q. If any of these neighbors is found not to lie within a distance d of q, the subset

5 of neighbors that do lie within d of q can be reported immediately, and the entire subtree rooted at

v need not be further examined. If on the other hand all the neighbors lie within d of q, we must

,-: pursue the exploration of T, and to do so we distinguish between two cases: if v is a leaf of T, we

report all the neighbors just found, otherwise no reporting takes place; instead, we iterate on the

same process with respect to each of the c children of u.

The algorithm is trivially correct, so we only need to investigate its running time Q(n). As

before, the set of nodes examined in T forms a subtree Tq of T. From Theorem 1, we derive that

Q(n) = O(E,er. (k(,) + log(n))), and since k(v) > Llog2 n],

Q(n) = 0( . k(v)).

Let v be any internal node of T. It follows directly from the algorithm that the k(v) neighbors

.- examined at node v all lie within d of q. As usual, let NI(v) denote this set of points. We can repeat

a previous argument to show that the -k(v) points of Nq(v) are discovered at node v for the first

5-'. 16
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time (note that these are the Yjk(v) points furthest away from q in Nq(v)). Since the total time'%

* required to visit all the children of v is O(ck(v)), it can be accounted for by the newly discovered

"- " neighbors. This scheme involves charging the cost incurred by each node to its parent, except for

the root of T9 that will also bear its own cost, i.e., O(log n) time. We thus derive the relation

Q(n) = O(ck + log n). (15)

Relations (6) and (15) allow us to conclude

Theorem 4. It is possible to solve the circular range search problem in O(k + log n) time, using

- . O(nI + I) space; k denotes the size of the output and c an arbitrarily small real number > 0.

5.3. A More Space-efficlent Algorithm

Applying the very same technique developed in Section 4.3, yet discarding the priority queue

-for which we have no use here- we derive the following result.

" Theorem S. It is possible to solve the circular range aerch problem in O(klog 2 n) time, using

O(nlogn) space; k denotes the size of the output.

-I
U,

6. Some Preprocessing Time Considerations

What is the time required to organize the various data structures introduced in this paper?

* In the case of Theorem 1, we can use Lee's O(k~n log n) time algorithm to construct the order-k

Voronoi diagram of S [8]. Since Vork(S) has O(k(n - k)) vertices, the decomposition of its dual

into subtrees T*,..., T, can be carried out in O(k(n - k) log n) time (see Lemma in Section 3). The

remaining preprocessing can be easily shown to require O(k x IVork(S)I) operations, therefore the

, " overall computation requires O(k 2 n log n) time.
*1
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The algorithms of Theorems 2 and 4 involve the same type of preprocessing. Since several

* Voronoi diagrams are needed, we can use the ingenious representation of the set {Vor1 (S),..., Vorq(S)}

.% .~recently discovered by Edelsbrunner et al [6]. This scheme allows us to construct and represent any

* .diagram Vorh(S), along with all its neighbor-lists, in time 0(k2 (n - k)), after O(n3 ) preprocessing.

This shows that the time required to organize the data structure for the algorithm of Theorem 2 is

0(n3) for each level, i.e., O(n' log n) for the entire structure. It is easy to see that the same result

holds true for the algorithm of Theorem 4.

Finally, concerning Theorems 3 and 5, recall that the corresponding data structures have already

S-.been shown to require O(n log n) time for their construction.

%. 7. Conclusions

The contribution of this work has been to propose an economical method for representing

higher-order Voronoi diagrams and demonstrate its power by describing improved algorithms for a

number of near-neighbor problems, in particular, for the circular range search problem, which had

3 [previously defied efficient solutions. Several open questions deserve investigation. Order-k Voronoi

diagrams are powerful tools, yet prohibitively expensive for large values of k. We partly overcame

this shortcoming by using filtering search. This rescinded the need for very high-order Voronoi

diagrams, yet failed to reduce the space requirement to O(n X POLYLOG(n)). Whether this bound

can be achieved, as is the case for the range query problem [41, is an interesting open question.

Another area worthwhile of study concerns the existence of efficient near-neighbor algorithms

that use only linear space. As mentioned earlier, F. Yao provided a partial answer to this question

by providing a linear space algorithm for the circular range 8earch problem with sublinear query

time [12]. Can a similar algorithm be devised for solving the k-neare8t neighbor problem?

1% :'
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